US009223699B2

a2z United States Patent (10) Patent No.: US 9,223,699 B2
Wau et al. (45) Date of Patent: Dec. 29, 2015
(549) CACHE MANAGEMENT IN MANAGED 58}%838222 ﬁ} : liggg }(UI}E}Hsay etal. ... ;ﬁ;}ﬁ
oshi
RUNTIME ENVIRONMENTS 2012/0089785 Al* 4/2012 Choetal.cccccovenrnne. 711/141
(71) Applicant: Intel Corporation, Santa Clara, CA FOREIGN PATENT DOCUMENTS
(US)
WO 2014/151278 Al 9/2014
(72) Inventors: Keqiang Wu, San Ramon, CA (US);
Kingsum Chow, Portland, OR (US); OTHER PUBLICATIONS
Yong-Fong Lee, San Jose, CA (US) Liu, Tongping et al. “Precise Detection and Automatic Mitigation of
.) . False Sharing” Apr. 9, 2011. Retrieved from: http://people.cs.umass.
(73) Assignee: Intel Corporation, Santa Clara, CA edu/~emery/pubs/fs-oopsla201 1.pdf.*
(Us) Bacon et al., “Space-and Time-Efficient Implementation of the Java
Object Model”, Proceedings of the Sixteenth European Conference
(*) Notice: Subject to any disclaimer, the term of this on Object-Oriented Programming (ECOOP), Springer-Verlag, 2002,
patent is extended or adjusted under 35 21 lf)’age& " " exible and Efici
U.S.C. 154(b) by 260 davs. Dybvigetal., “Don’t Stop the BIBOP: Flexible and Efficient Storage
(®) by ays Management for Dynamically-Typed Languages”, Technical Report
. 400, Indiana Computer Science Department, Mar. 1994, 17 Pages.
(21) Appl. No.: 13/837,069 International Search Report and Written Opinion received for PCT
(22) Filed Mar. 15. 2013 Patent Application No. PCT/US2014/025347, mailed on Aug. 7,
led: ar 15, 2014, 11 Pages.
Venstermans et al., “Java Object Header Elimination for Reduced
(65) Prior Publication Data Memory Consumption in 64-bit Virtual Machines”, ACM Transac-
tions on Architecture and Code Optimization (TACO), vol. 4, Issue 3,
US 2014/0281230 Al Sep. 18, 2014 Atticle No. 17, Sep. 2007, 30 Pages.
(51) Int.ClL * cited by examiner
GO6F 12/08 (2006.01)
(52) US.CL Primary Examiner — Daniel Tsui
CPC GOG6F 12/0802 (2013.01); GO6F 12/0815 (74) Attorney, Agent, or Firm — Alpine Technology Law
(2013.01) Group LLC
(58) Il:“IiOeIlltei: of Classification Search 7) ABSTRACT
See application file for complete search history. Methods and apparatus to provide cache management in
managed runtime environments are described. In one
(56) References Cited embodiment, a controller comprises logic to determine an

U.S. PATENT DOCUMENTS

update frequency for an object in the runtime environment
and assigning the object to an unshared cache line when the

2004/0107319 Al
2008/0104344 Al
2011/0029736 Al
2011/0231612 Al

6/2004 D’Orto et al.
5/2008 Shimozono et al.

update frequency exceeds an update frequency threshold.
Other embodiments are also described.

2/2011 Sato et al.
9/2011 Karlsson et al.

'MANAGED RUNTIME APPLICATION
RUNNING
l 310
UTILIZATIOX >= THRESHOLD
No sis

MoNITOR UrDaTs FREQUENCIES
20

OBIECT UPDATED?
530
Yes
DETERMINE UPDATE FREQUENCY
335
STORE UPDATE FREQUENCY [N MFU
FIELp.
40

345

H

MARKINGICOMPACTING
350

'MFU >= MFU THRESHOLD?

Yes 555
"ASSIGN GRJECT TO UNSHARED CACHE TR —— ercE e
Lne SHARED
0 365

21 Claims, 4 Drawing Sheets

U.S. Patent

Dec. 29, 2015

Sheet 1 of 4

PROCESSOR 102-1

CORE 1 CORE 2 CORE M
106-1 106-2 106-M
TASK TASK TASK

SCHEDULER SCHEDULER SCHEDULER
118-1 118-2 118-M
L1 L1 L1
116-1 116-2 116-M
< I 1 (| o
ROUTER CONTROL 112 | SHARED
110 UNIT CACHE
o 120 108

US 9,223,699 B2

100

A INTERCONNECTION
104

7

PROCESSOR 102-2

MEMORY
114

PROCESSOR 102-N

PROCESSOR 102-3

Fi1G. 1

U.S. Patent Dec. 29, 2015 Sheet 2 of 4 US 9,223,699 B2

PROCESSOR CORE 106
FETCH UNIT
202 | DECODE SCHEDULE
UNIT » UNIT
204 206
vy
REGISTER(S) L1 CACHE EXECUTION
216 116 UNIT
_ — 208
\J
RETIREMENT
UNIT
210
Bus UNIT
214
-4 J >
104/112 SHARED CACHE MEMORY | CONTROL
108 114 i UNIT
_ o | 120

FIG. 2

U.S. Patent Dec. 29, 2015 Sheet 3 of 4 US 9,223,699 B2

Cache 300

Cache Line 1 31

Cache Line 2 31

Cache Line 3 31

Cache Line N 31 |

FIG. 3

400

F1G. 4

U.S. Patent Dec. 29, 2015 Sheet 4 of 4 US 9,223,699 B2

MANAGED RUNTIME APPLICATION)
RUNNING
510

UTILIZATION >= THRESHOLD

320

y

[MONITOR UPDATE FREQUENCIES

SET MFU THRESHOLD
325

OBJECT UPDATED?

535

'

[STORE UPDATE FREQUENCY IN MFU

[DETERMINE UPDATE FREQUENCY

FIELD
340

No

GARBAGE COLLECTION?

MARKING/COMPACTING
350

MFU >= MFU THRESHOLD?

Yes

Y Y

ASSIGN OBJECT TO UNSHARED CACHE))
ASSIGN OBJECT TO SHARED CACHE LINE
LiNe 565
560
I

FIG. 5

US 9,223,699 B2

1
CACHE MANAGEMENT IN MANAGED
RUNTIME ENVIRONMENTS

FIELD

The present disclosure generally relates to the field of
computing. More particularly, an embodiment of the inven-
tion generally relates to cache management in managed runt-
ime environments.

BACKGROUND

Modern computing systems enable managed runtime envi-
ronments to be implemented on multicore processor systems.
Many multicore processor systems utilize distributed, coher-
ent cache memory, which gives rise to false sharing problems
which, in turn, reduce performance of the system. Accord-
ingly, techniques to reduce false sharing problems may find
utility.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is provided with reference to the
accompanying figures. In the figures, the left-most digit(s) of
areference number identifies the figure in which the reference
number first appears. The use of the same reference numbers
in different figures indicates similar or identical items.

FIGS. 1-2 are schematic, block diagram illustration of an
electronic device which may be adapted to implement cache
management in managed runtime environments, according to
some embodiments.

FIG. 3 is a schematic illustration of a cache memory which
may be used to implement cache management in managed
runtime environments, according to some embodiments.

FIG. 4 is a schematic illustration of an object in a managed
runtime environment, according to some embodiments.

FIG. 5 is a flowchart illustrating operations in a method to
implement cache management in managed runtime environ-
ments, according to some embodiments.

DETAILED DESCRIPTION

Described herein are various embodiments of techniques
to manage cache operations in order to eliminate, or at least to
reduce, false sharing problems in managed runtime environ-
ments. In general, false sharing happens when two objects or
fields that are frequently accessed (either read or written) by
different threads in a multiprocessor environment, at least one
of'the threads is doing writes, and the objects happen to be on
the same cache line. With the industry trend of integrating
more cores into a single system, the cache line false sharing
highly-likely becomes the computer performance bottleneck.
Reducing the cache line false sharing could improve the com-
puter performance significantly.

Broad, various embodiments described herein address this
issue by implementing techniques in which an update fre-
quency is determined for objects in the managed runtime
environment and objects which are frequently updated are
assigned an unshared cache line. In some embodiments an
update threshold may be established, e.g., by periodically
compiling update frequency statistics for numerous object
managed in the runtime environment. Thus, in some embodi-
ments the update frequency threshold may be adjusted
dynamically in accordance with the particular workload
being managed by the managed runtime environment.

Objects which are updated more frequently than the update
frequency threshold may be considered as exceeding the

10

20

30

35

40

45

50

2

update frequency threshold and may be assigned to an
unshared cache line. In some embodiments these objects may
be padded, e.g., by inserting additional data, such that the
object consumes an entire cache line. In some embodiments
atleast one section ofthe cache memory may be designated as
single object line memory and these objects may be assigned
to the single object line memory of the cache memory. In
some embodiments the object may be designated as a com-
plete cache line object and the assigned to an unshared cache
line.

Assigning objects which are most frequently updated to
unshared cache lines reduces the likelihood of false sharing
events. Thus, various embodiments described herein address
the technical problem of managing cache memory in man-
aged runtime environments in order to reduce false sharing
events.

In the following description, numerous specific details are
set forth in order to provide a thorough understanding of
various embodiments. However, various embodiments of the
invention may be practiced without the specific details. In
other instances, well-known methods, procedures, compo-
nents, and circuits have not been described in detail so as not
to obscure the particular embodiments of the invention. Fur-
ther, various aspects of embodiments of the invention may be
performed using various means, such as integrated semicon-
ductor circuits (“hardware”), computer-readable instructions
organized into one or more programs (“software”), or some
combination of hardware and software. For the purposes of
this disclosure reference to “logic” shall mean either hard-
ware, software (including for example micro-code that con-
trols the operations of a processor, firmware, etc.), or some
combination thereof. Also, as discussed herein, the terms
“hardware” and “logic” are interchangeable.

FIGS. 1-2 are schematic, block diagram illustration of an
electronic device which may be adapted to implement cache
management in managed runtime environments, according to
some embodiments. The system 100 may include one or more
processors 102-1 through 102-N (generally referred to herein
as “processors 102” or “processor 102”). The processors 102
may communicate via an interconnection network or bus 104.
Each processor may include various components some of
which are only discussed with reference to processor 102-1
for clarity. Accordingly, each of the remaining processors
102-2 through 102-N may include the same or similar com-
ponents discussed with reference to the processor 102-1.

In an embodiment, the processor 102-1 may include one or
more processor cores 106-1 through 106-M (referred to
herein as “cores 106 or as an executor in the context of the
description of the scheduler), a shared cache 108, a router
110, and/or a processor control logic or unit 120. The proces-
sor cores 106 may be implemented on a single integrated
circuit (IC) chip. Moreover, the chip may include one or more
shared and/or private caches (such as cache 108), buses or
interconnections (such as a bus or interconnection network
112), memory controllers, or other components.

The processor cores 106 may comprise local cache
memory 116-1 through 116-M (referred to herein as cache
116) and comprise task scheduler logic 118-1 through 118-M
(referred to herein as task scheduler logic 118). The task
scheduler logic 118 may implement operations, described
below, to assign a task to one or more cores 106 and/or to steal
a task from one or more cores 106 when the core 106 has
available computing bandwidth.

In one embodiment, the router 110 may be used to com-
municate between various components of the processor
102-1 and/or system 100. Moreover, the processor 102-1 may
include more than one router 110. Furthermore, the multitude

US 9,223,699 B2

3

of routers 110 may be in communication to enable data rout-
ing between various components inside or outside of the
processor 102-1.

The shared cache 108 may store data (e.g., including
instructions) that are utilized by one or more components of
the processor 102-1, such as the cores 106. For example, the
shared cache 108 may locally cache data stored in a memory
114 for faster access by components of the processor 102. In
an embodiment, the cache 108 may include a mid-level cache
(such as a level 2 (1.2), a level 3 (1.3), a level 4 (L4), or other
levels of cache), a last level cache (LLC), and/or combina-
tions thereof. Moreover, various components of the processor
102-1 may communicate with the shared cache 108 directly,
through a bus (e.g., the bus 112), and/or a memory controller
or hub. As shown in FIG. 1, in some embodiments, one or
more of the cores 106 may include alevel 1 (1) cache 116-1
(generally referred to herein as “L.1 cache 116”).

FIG. 2 illustrates a block diagram of portions ofa processor
core 106 and other components of a computing system,
according to an embodiment of the invention. In one embodi-
ment, the arrows shown in FIG. 2 illustrate the flow direction
of instructions through the core 106. One or more processor
cores (such as the processor core 106) may be implemented
on a single integrated circuit chip (or die) such as discussed
with reference to FIG. 1. Moreover, the chip may include one
or more shared and/or private caches (e.g., cache 108 of FIG.
1), interconnections (e.g., interconnections 104 and/or 112 of
FIG. 1), control units, memory controllers, or other compo-
nents.

Asillustrated in FIG. 2, the processor core 106 may include
a fetch unit 202 to fetch instructions (including instructions
with conditional branches) for execution by the core 106. The
instructions may be fetched from any storage devices such as
the memory 114. The core 106 may also include a decode unit
204 to decode the fetched instruction. For instance, the
decode unit 204 may decode the fetched instruction into a
plurality of vops (micro-operations).

Additionally, the core 106 may include a schedule unit 206.
The schedule unit 206 may perform various operations asso-
ciated with storing decoded instructions (e.g., received from
the decode unit 204) until the instructions are ready for dis-
patch, e.g., until all source values of a decoded instruction
become available. In one embodiment, the schedule unit 206
may schedule and/or issue (or dispatch) decoded instructions
to an execution unit 208 for execution. The execution unit 208
may execute the dispatched instructions after they are
decoded (e.g., by the decode unit 204) and dispatched (e.g.,
by the schedule unit 206). In an embodiment, the execution
unit 208 may include more than one execution unit. The
execution unit 208 may also perform various arithmetic
operations such as addition, subtraction, multiplication, and/
or division, and may include one or more an arithmetic logic
units (ALUs). In an embodiment, a co-processor (not shown)
may perform various arithmetic operations in conjunction
with the execution unit 208.

Further, the execution unit 208 may execute instructions
out-of-order. Hence, the processor core 106 may be an out-
of-order processor core in one embodiment. The core 106
may also include a retirement unit 210. The retirement unit
210 may retire executed instructions after they are commit-
ted. In an embodiment, retirement of the executed instruc-
tions may result in processor state being committed from the
execution of the instructions, physical registers used by the
instructions being de-allocated, etc.

The core 106 may also include a bus unit 114 to enable
communication between components of the processor core
106 and other components (such as the components discussed

20

25

40

45

55

4

with reference to FIG. 2) via one or more buses (e.g., buses
104 and/or 112). The core 106 may also include one or more
registers 216 to store data accessed by various components of
the core 106 (such as values related to power consumption
state settings).

Furthermore, even though FIG. 1 illustrates the control unit
120 to be coupled to the core 106 via interconnect 212, in
various embodiments the control unit 120 may be located
elsewhere such as inside the core 106, coupled to the core via
bus 104, etc.

FIG. 3 is a schematic illustration of a cache memory which
may be used to implement one or more of the cache memories
depicted in FIGS. 1-2. Referring to FIG. 3, in some embodi-
ments the cache 300 comprises a plurality of cache identified
in FIG. 3 as cache line 1 310, cache line 2, 310, up to cache
line N. In various embodiments each cache line 310 may be
64 bytes in length and may hold up to four descriptors of 16
bytes each. The number of cache lines 310 in cache 300 is a
function of the total size of the cache.

An electronic device 100 such as that depicted in FIGS. 1-2
may be used to implement a virtual machine in a managed
runtime environment. Examples of managed runtime envi-
ronments include a Java Virtual Machine (JVM) or a
Microsoft NET Common Language Runtime (CLR). This
application will be described in the context of a JVM, but the
principles apply equally to other managed runtime environ-
ments.

FIG. 4 is a schematic illustration of an object in a managed
runtime environment, according to some embodiments. An
objectin JVM, other virtual machine, or other object-oriented
languages comprises one or more object data fields 435 along
with a header. The header may contain a number of fields
410-430 for bookkeeping purposes. By way of example, an
object header for a 64-bit JVM typically comprises the fol-
lowing fields:

TIB Pointer 410: The TIB (Type Information Block)
pointer holds information that applies to all objects of a type.
Each object points to a TIB, which could be a class object or
some other related object. For example, in IBM likes
Research Virtual Machine, the TIB includes the virtual
method table, a pointer to an object representing the type, and
pointers to a few data structures to facilitate efficient interface
invocation and dynamic type checking.

Default Hash Code 415: Each Java object has a default hash
code.

Lock 420: Each Java object has an associated lock state.
This could be a pointer to a lock object or a direct represen-
tation of the lock.

Garbage Collection Information 425: Each JVM object has
associated information used by the memory management
system. Usually this comprises one or two mark bits, but it
could also include some combination of a reference count,
forwarding pointer, etc.

In embodiments described herein, a virtual machine object
maintains a MFU (most-frequently-updated) field 430 in the
header. The MFU field may be used to store a frequency
update indicator which indicates how frequently the object is
updated. during a time period. For example, the MFU may
comprise 8 bits, i.e. 7 bits for counting how many times it has
been updated and the 8th bit is set only when the update
frequency exceeds a threshold (i.e. 128). Objects which are
the most frequently updated objects in a virtual machine may
be assigned to an unshared cache line to reduce the likelihood
of false sharing in the virtual machine.

Having described various embodiments and configurations
of electronic devices which may be adapted to implement a
locality aware work stealing runtime scheduler methods to

US 9,223,699 B2

5

implement a method to implement cache management in
managed runtime environments. FIG. 5 is a flowchart illus-
trating operations in a method to implement cache manage-
ment in managed runtime environments, according to some
embodiments. Operations of the task schedulers will be
described with reference to FIG. 5.

The embodiment depicted in FIG. 5 is described within the
context of a managed runtime environment. Thus at operation
510 a managed runtime application is executing on the virtual
machine. The virtual machine may manage a cache memory
having characteristics as described with reference to FIG. 3
and will define a plurality of objects having characteristics as
described with reference to FIG. 4.

In some embodiments cache management may be imple-
mented only when system resources are utilized at a level that
is above a threshold. By way of example, in some embodi-
ments system parameters are assessed to determine whether
more than one socket is open for the application and/or if CPU
utilization is above a threshold rate (e.g., 50%). If at operation
515 the utilization rate is less than the threshold then control
passes back to operation 510 and the application continues to
execute without active cache management.

By contrast, if at operation 515 the utilization rate meets or
exceeds the threshold then control passes to operation 525
and the update frequencies of the various objects instantiated
for the application are monitored and at operation 525 a most
frequently updated (MFU) threshold is set. By way of
example, in some embodiments the update frequencies of the
various objects instantiated for the application may be moni-
tored periodically. In some embodiments the MFU threshold
may be set at a percentile of the update frequencies (e.g.,
90%). In other embodiments an average or other statistical
derivative of the update frequencies may be adopted.

Once the MFU threshold has been set the threshold may be
applied to the respective objects instantiated for the applica-
tion each time an object is updated. Thus, if at operation 530
an object is updated control passes to operation 535 and the
new update frequency for the object is determined. At opera-
tion 540 the update frequency is stored in the MFU field 430
of the object.

In some embodiments objects are managed in cache
memory during a periodic garbage collection process. Thus,
if at operation 545 the garbage collection process is not active
then control passes back to operation 510 and the process
continues to monitor objects in the runtime environment. By
contrast, if at operation 545 the garbage collection process is
active then control passes to operation 550 and the marking/
compacting process is implemented.

If, at operation 555 the MFU field of objects in the man-
aged runtime environment at least equal to the MFU threshold
determined at operation 525 then those objects are assigned to
an unshared cache line (operation 560). By contrast, objects
for which the MFU field is less than the MFU threshold may
be assigned to shared cache lines (operation 565).

Various techniques may be used to assign objects for which
the MFU field is at least equal to the MFU threshold deter-
mined at operation 525 to an unshared cache line. In some
embodiments a data field of these objects may be padded such
that the objects are of a sufficient size to negate the opportu-
nity to share a cache line with another object. By way of
example, in some embodiments objects may be padded dur-
ing the compacting phase of the garbage collection process.

In further embodiments a section of the cache memory 300
may be designated as a single object line memory section
which is allowed to hold only a single object. Objects for
which the MFU field is at least equal to the MFU threshold
determined at operation 525 may be assigned to the single

10

15

20

25

30

35

40

45

50

55

60

65

6

object memory section. In further embodiments objects for
which the MFU field is at least equal to the MFU threshold
determined at operation 525 may be as complete cache line
objects and assigned to an unshared cache line 310 in the
cache.

The following examples pertain to further embodiments.

Example 1 is a computer program product comprising
logic instructions stored in a non-transitory computer read-
able medium which, when executed by a controller, configure
the controller to perform operations to manage a cache
memory in a runtime environment, comprising determining
an update frequency for an object 400 in the runtime environ-
ment and assigning the object 400 to an unshared cache line
310 when the update frequency exceeds an update frequency
threshold.

In some embodiments the logic instructions configure the
controller to perform operations comprising storing the
update frequency for the object 400 in a data field in a header
for the object. In some embodiments the logic instructions
configure the controller to perform operations comprising
monitoring an update frequency for a plurality of objects 400
in the runtime environment on a periodic basis and setting the
update frequency threshold dynamically as a function of the
update frequency for the plurality of objects 400.

In some embodiments the logic instructions configure the
controller to perform operations comprising padding a data
field 425 of the object 400 when the update frequency reaches
the update frequency threshold. In some embodiments the
logic instructions configure the controller to perform opera-
tions comprising unpadding the data field 425 of the object
400 when the update frequency falls below the update fre-
quency threshold.

In some embodiments the logic instructions configure the
controller to perform operations comprising designating a
section of the cache memory 300 as a single object line
memory section and assigning the object 400 to the single
object memory section when the update frequency exceeds an
update frequency threshold.

In some embodiments the logic instructions configure the
controller to perform operations comprising designating the
object 400 as a complete cache line object when the update
frequency exceeds an update frequency threshold and assign-
ing the object 400 to an unshared cache line 310.

Example 2 is a controller comprising logic to perform
operations to manage a cache memory in a runtime environ-
ment, comprising determining an update frequency for an
object 400 in the runtime environment and assigning the
object 400 to an unshared cache line 310 when the update
frequency exceeds an update frequency threshold.

In some embodiments the logic configures the controller to
store the update frequency for the object 400 in a data field in
a header for the object. In some embodiments the logic con-
figures the controller to monitor an update frequency for a
plurality of objects 400 in the runtime environment on a
periodic basis and set the update frequency threshold dynami-
cally as a function of the update frequency for the plurality of
objects 400.

In some embodiments the logic configures the controller to
pad a data field 425 of the object 400 when the update fre-
quency reaches the update frequency threshold.

In some embodiments the logic configures the controller to
unpad the data field 425 of the object 400 when the update
frequency falls below the update frequency threshold.

In some embodiments the logic configures the controller to
designate a section of the cache memory 300 as a single object
line memory section and assign the object 400 to the single
object memory section when the update frequency exceeds an

US 9,223,699 B2

7

update frequency threshold. In some embodiments the logic
configures the controller to designate the object 400 as a
complete cache line object when the update frequency
exceeds an update frequency threshold and assign the object
400 to an unshared cache line 310.

In example 3, an electronic device comprises at least one
cache memory and controller comprising logic to perform
operations to manage the cache memory in a runtime envi-
ronment, comprising determining an update frequency for an
object 400 in the runtime environment and assigning the
object 400 to an unshared cache line 310 when the update
frequency exceeds an update frequency threshold.

In some embodiments the logic configures the controller to
store the update frequency for the object 400 in a data field in
a header for the object. In some embodiments the logic con-
figures the controller to monitor an update frequency for a
plurality of objects 400 in the runtime environment on a
periodic basis and set the update frequency threshold dynami-
cally as a function of the update frequency for the plurality of
objects 400.

In some embodiments the logic configures the controller to
pad a data field 425 of the object 400 when the update fre-
quency reaches the update frequency threshold. In some
embodiments the logic configures the controller to unpad the
data field 425 of the object 400 when the update frequency
falls below the update frequency threshold.

In some embodiments the logic configures the controller to
designate a section of the cache memory 300 as a single object
line memory section and assign the object 400 to the single
object memory section when the update frequency exceeds an
update frequency threshold. In some embodiments the logic
configures the controller to designate the object 400 as a
complete cache line object when the update frequency
exceeds an update frequency threshold and assign the object
400 to an unshared cache line 310.

In example 4 a method to manage a cache memory in a
runtime environment, comprises determining an update fre-
quency for an object 400 in the runtime environment and
assigning the object 400 to an unshared cache line 310 when
the update frequency exceeds an update frequency threshold.

In some embodiments the method comprises storing the
update frequency for the object 400 in a data field in a header
for the object. In some embodiments the method comprises
monitoring an update frequency for a plurality of objects 400
in the runtime environment on a periodic basis and setting the
update frequency threshold dynamically as a function of the
update frequency for the plurality of objects 400.

In some embodiments the method comprises padding a
data field 425 of the object 400 when the update frequency
reaches the update frequency threshold. In some embodi-
ments the method comprises unpadding the data field 425 of
the object 400 when the update frequency falls below the
update frequency threshold.

In some embodiments the method comprises designating a
section of the cache memory 300 as a single object line
memory section and assigning the object 400 to the single
object memory section when the update frequency exceeds an
update frequency threshold. In some embodiments the
method comprises designating the object 400 as a complete
cache line object when the update frequency exceeds an
update frequency threshold and assigning the object 400 to an
unshared cache line 310.

In example 5 an apparatus comprises means for determin-
ing an update frequency for an object 400 in the runtime
environment and means for assigning the object 400 to an
unshared cache line 310 when the update frequency exceeds
an update frequency threshold.

10

15

20

25

30

35

40

45

50

55

60

65

8

In some embodiments the apparatus comprises means for
storing the update frequency for the object 400 in a data field
in a header for the object. In some embodiments the method
comprises means for monitoring an update frequency for a
plurality of objects 400 in the runtime environment on a
periodic basis and means for setting the update frequency
threshold dynamically as a function of the update frequency
for the plurality of objects 400.

means for padding a data field 425 of the object 400 when
the update frequency reaches the update frequency threshold.
In some embodiments the method comprises means for
unpadding the data field 425 of the object 400 when the
update frequency falls below the update frequency threshold.

In some embodiments the method comprises means for
designating a section of the cache memory 300 as a single
object line memory section and means for assigning the
object 400 to the single object memory section when the
update frequency exceeds an update frequency threshold. In
some embodiments the method comprises means for desig-
nating the object 400 as a complete cache line object when the
update frequency exceeds an update frequency threshold and
means for assigning the object 400 to an unshared cache line
310.

Reference in the specification to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
may be included in at least an implementation. The appear-
ances of the phrase “in one embodiment” in various places in
the specification may or may not be all referring to the same
embodiment.

Also, in the description and claims, the terms “coupled”
and “connected,” along with their derivatives, may be used. In
some embodiments of the invention, “connected” may be
used to indicate that two or more elements are in direct physi-
cal or electrical contact with each other. “Coupled” may mean
that two or more elements are in direct physical or electrical
contact. However, “coupled” may also mean that two or more
elements may not be in direct contact with each other, but may
still cooperate or interact with each other.

Additionally, such computer-readable media may be
downloaded as a computer program product, wherein the
program may be transferred from a remote computer (e.g., a
server) to a requesting computer (e.g., a client) by way of data
signals, e.g., through a carrier wave or other propagation
medium, via a communication link (e.g., a bus, a modem, or
a network connection).

Thus, although embodiments of the invention have been
described in language specific to structural features and/or
methodological acts, it is to be understood that claimed sub-
ject matter may not be limited to the specific features or acts
described. Rather, the specific features and acts are disclosed
as sample forms of implementing the claimed subject matter.

What is claimed is:

1. A computer program product comprising logic instruc-
tions stored in a non-transitory computer readable medium
which, when executed by a controller, configure the control-
ler to perform operations to manage a cache memory in a
runtime environment, comprising:

determining an update frequency for an object in the runt-

ime environment;

assigning the object to an unshared cache line when the

update frequency exceeds an update frequency thresh-
old and;

storing the update frequency for the object in a data field in

a header for the object.

2. The computer program product of claim 1, further com-

prising logic instructions stored in the non-transitory com-

US 9,223,699 B2

9

puter readable medium which, when executed by the control-
ler, configure the controller to perform operations
comprising:

monitoring the update frequency for a plurality of objects

in the runtime environment on a periodic basis; and

setting the update frequency threshold dynamically as a

function of the update frequency for the plurality of
objects.

3. The computer program product of claim 1, further com-
prising logic instructions stored in the non-transitory com-
puter readable medium which, when executed by the control-
ler, configure the controller to perform operations
comprising:

padding a data field of the object when the update fre-

quency reaches the update frequency threshold.

4. The computer program product of claim 1, further com-
prising logic instructions stored in the non-transitory com-
puter readable medium which, when executed by the control-
ler, configure the controller to perform operations
comprising:

unpadding the data field of the object when the update

frequency falls below the update frequency threshold.

5. The computer program product of claim 1, further com-
prising logic instructions stored in the non-transitory com-
puter readable medium which, when executed by the control-
ler, configure the controller to perform operations
comprising:

designating a section of the cache memory as a single

object line memory section; and

assigning the object to the single object memory section

when the update frequency exceeds an update frequency
threshold.

6. The computer program product of claim 1, further com-
prising logic instructions stored in the non-transitory com-
puter readable medium which, when executed by the control-
ler, configure the controller to perform operations
comprising:

designating the object as a complete cache line object when

the update frequency exceeds an update frequency
threshold; and

assigning the object to an unshared cache line.

7. A controller comprising logic to perform operations to
manage a cache memory in a runtime environment, compris-
ing:

determining an update frequency for an object in the runt-

ime environment; and

assigning the object to an unshared cache line when the

update frequency exceeds an update frequency thresh-
old; and

store the update frequency for the object in a data field in a

header for the object.

8. The controller of claim 7, further comprising logic to:

monitor an update frequency for a plurality of objects in the

runtime environment on a periodic basis; and

set the update frequency threshold dynamically as a func-

tion of the update frequency for the plurality of objects.

9. The controller of claim 7, further comprising logic to:

pad a data field of the object when the update frequency

reaches the update frequency threshold.

10. The controller of claim 7, further comprising logic to:

unpad the data field of the object when the update fre-

quency falls below the update frequency threshold.

11. The controller of claim 7, further comprising logic to:

designate a section of the cache memory as a single object

line memory section; and

20

30

40

45

55

60

10

assign the object to the single object memory section when
the update frequency exceeds an update frequency
threshold.
12. The controller of claim 7, further comprising logic to:
designate the object as a complete cache line object when
the update frequency exceeds an update frequency
threshold; and
assign the object to an unshared cache line.
13. An electronic device, comprising:
at least one cache memory; and
controller comprising logic to perform operations to man-
age the cache memory in a runtime environment, com-
prising:
determining an update frequency for an object in the
runtime environment; and
assigning the object to an unshared cache line when the
update frequency exceeds an update frequency
threshold and;
storing the update frequency for the object in a data field
in a header for the object.
14. The electronic device of claim 13, wherein the control-
ler further comprises logic to:
monitor an update frequency for a plurality of objects in the
runtime environment on a periodic basis; and
set the update frequency threshold dynamically as a func-
tion of the update frequency for the plurality of objects.
15. The electronic device of claim 13, wherein the control-
ler further comprises logic to:
pad a data field of the object when the update frequency
reaches the update frequency threshold.
16. The electronic device of claim 13, wherein the control-
ler further comprises logic to:
unpad the data field of the object when the update fre-
quency falls below the update frequency threshold.
17. The electronic device of claim 13, wherein the control-
ler further comprises logic to:
designate a section of the cache memory as a single object
line memory section; and
assign the object to the single object memory section when
the update frequency exceeds an update frequency
threshold.
18. The electronic device of claim 13, wherein the control-
ler further comprises logic to:
designate the object as a complete cache line object when
the update frequency exceeds an update frequency
threshold; and
assign the object to an unshared cache line.
19. A method to manage a cache memory in a runtime
environment, comprising:
determining an update frequency for an object in the runt-
ime environment; and
assigning the object to an unshared cache line when the
update frequency exceeds an update frequency thresh-
old and;
storing the update frequency for the object in a data field in
a header for the object.
20. The method of claim 19, further comprising:
monitoring an update frequency for a plurality of objects in
the runtime environment on a periodic basis; and
setting the update frequency threshold dynamically as a
function of the update frequency for the plurality of
objects.
21. The method of claim 19, further comprising:
padding a data field of the object when the update fre-
quency reaches the update frequency threshold.

#* #* #* #* #*

